On a Theorem of Ore

Author

Montes, Jesús

Nart, Enric

Publication date

1992



Abstract

0. Ore (Math. Ann. 99. 1928, 84-I 17) developed a method for obtaining the absolute discriminant and the prime-ideal decomposition of the rational primes in a number field K. The method, based on Newton’s polygon techniques, worked only when certain polynomials /i(Y), attached to any side S of the polygon, had no multiple factors. These results are generalized in this paper finding a much weaker condition, effectively computable, under which it is still possible to give a complete answer to the above questions. The multiplicities of the irreducible factors of the polynomials /;( Y) play thtn an essential role.

Document Type

Article
Published version

Language

English

CDU Subject

511 - Number theory

Subject

Matemàtiques; Polinomis; Nombres primers

Pages

17 p.

Documents

DR_MONTES_1992.pdf

795.5Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)