On a Theorem of Ore

dc.contributor.author
Montes, Jesús
dc.contributor.author
Nart, Enric
dc.date.accessioned
2018-07-18T12:47:04Z
dc.date.available
2018-07-18T12:47:04Z
dc.date.issued
1992
dc.identifier.uri
http://hdl.handle.net/2072/330874
dc.description.abstract
0. Ore (Math. Ann. 99. 1928, 84-I 17) developed a method for obtaining the absolute discriminant and the prime-ideal decomposition of the rational primes in a number field K. The method, based on Newton’s polygon techniques, worked only when certain polynomials /i(Y), attached to any side S of the polygon, had no multiple factors. These results are generalized in this paper finding a much weaker condition, effectively computable, under which it is still possible to give a complete answer to the above questions. The multiplicities of the irreducible factors of the polynomials /;( Y) play thtn an essential role.
eng
dc.format.extent
17 p.
cat
dc.language.iso
eng
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Matemàtiques
cat
dc.subject.other
Polinomis
cat
dc.subject.other
Nombres primers
cat
dc.title
On a Theorem of Ore
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/publishedVersion
cat
dc.subject.udc
511
cat
dc.embargo.terms
cap
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

DR_MONTES_1992.pdf

795.5Kb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)