To access the full text documents, please follow this link: http://hdl.handle.net/10230/656

Improved estimation of the covariance matrix of stock returns with an application to portofolio selection
Ledoit, Olivier; Wolf, Michael
Universitat Pompeu Fabra. Departament d'Economia i Empresa
This paper proposes to estimate the covariance matrix of stock returnsby an optimally weighted average of two existing estimators: the samplecovariance matrix and single-index covariance matrix. This method isgenerally known as shrinkage, and it is standard in decision theory andin empirical Bayesian statistics. Our shrinkage estimator can be seenas a way to account for extra-market covariance without having to specifyan arbitrary multi-factor structure. For NYSE and AMEX stock returns from1972 to 1995, it can be used to select portfolios with significantly lowerout-of-sample variance than a set of existing estimators, includingmulti-factor models.
2005-09-15
Finance and Accounting
covariance matrix estimation
factor models
portofolio selection
shrinkage
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Working Paper
         

Show full item record

 

Coordination

 

Supporters