To access the full text documents, please follow this link:

Mixed dynamics in reversible maps with gure-8 homoclinic connections
Delshams Valdés, Amadeu; Gonchenko, Sergey; Lázaro Ochoa, José Tomás
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. SD - Sistemes Dinàmics
We study dynamics and bifurcations of two-dimensional reversible maps having non-transversal heteroclinic cycles containing symmetric saddle periodic points. We consider one-parameter families of rev ersible maps unfolding generally the initial heteroclinic tangency and prove that there are infinitely sequences (cascades) of bifurcations of birth of asymptotically stable and unstable as well as elliptic periodic orbits.
Àrees temàtiques de la UPC::Matemàtiques i estadística
Differentiable dynamical systems
Sistemes dinàmics diferenciables
Attribution-NonCommercial-NoDerivs 3.0 Spain

Show full item record

Related documents

Other documents of the same author

Delshams Valdés, Amadeu; Gonchenko, Marina; Gonchenko, Sergey
Delshams Valdés, Amadeu; Lázaro Ochoa, José Tomás; Gonchenko, S.V.; Sten'kin, Oleg
Delshams Valdés, Amadeu; Gonchenko, S.V.; Lázaro Ochoa, José Tomás; Stenkin, Oleg
Delshams Valdés, Amadeu; Lázaro Ochoa, José Tomás
Delshams Valdés, Amadeu; Guillamon Grabolosa, Antoni; Lázaro Ochoa, José Tomás