To access the full text documents, please follow this link: http://hdl.handle.net/2117/17030

Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps
Delshams Valdés, Amadeu; Gonchenko, S.V.; Lázaro Ochoa, José Tomás; Stenkin, Oleg
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
We study dynamics and bifurcations of two-dimensional reversible maps having non-transversal heteroclinic cycles containing symmetric saddle fixed points. We consider one-parameter families of reversible maps unfolding the initial heteroclinic tangency and prove the existence of infinitely many sequences (cascades) of bifurcations and birth of asymptotically stable, unstable and elliptic periodic orbits
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística
Sistemes dinàmics diferenciables
Equacions diferencials
Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/publishedVersion
Article
         

Show full item record

Related documents

Other documents of the same author

Delshams Valdés, Amadeu; Lázaro Ochoa, José Tomás; Gonchenko, S.V.; Sten'kin, Oleg
Delshams Valdés, Amadeu; Gonchenko, Sergey; Lázaro Ochoa, José Tomás
Delshams Valdés, Amadeu; Lázaro Ochoa, José Tomás
Delshams Valdés, Amadeu; Guillamon Grabolosa, Antoni; Lázaro Ochoa, José Tomás
Delshams Valdés, Amadeu; Lázaro Ochoa, José Tomás
 

Coordination

 

Supporters