To access the full text documents, please follow this link: http://hdl.handle.net/2117/8321

An application of reinforcement learning for efficient spectrum usage in next-generation mobile cellular networks
Bernardo Álvarez, Francisco; Agustí Comes, Ramon; Pérez Romero, Jordi; Sallent Roig, José Oriol
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Universitat Politècnica de Catalunya. GRCM - Grup de Recerca en Comunicacions Mòbils
This paper proposes reinforcement learning as a foundational stone of a framework for efficient spectrum usage in the context of nextgeneration mobile cellular networks. The objective of the framework is to efficiently use the spectrum in a cellular orthogonal frequency-division multiple access network while unnecessary spectrum is released for secondary spectrum usage within a private commons spectrum accessmodel. Numerical results show that the proposed framework obtains the best performance compared with other approaches for spectrum assignment. Moreover, the framework is relatively simple to implement in terms of computational requirements and signaling overhead.
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació
Cell phones
Signal theory (Telecommunication)
Telefonia mòbil
Senyal, Teoria del (Telecomunicació)
info:eu-repo/semantics/publishedVersion
Article
         

Show full item record

Related documents

Other documents of the same author

Bernardo Álvarez, Francisco; Agustí Comes, Ramon; Pérez Romero, Jordi; Sallent Roig, José Oriol
Bernardo Álvarez, Francisco; Agustí Comes, Ramon; Pérez Romero, Jordi; Sallent Roig, José Oriol
Bernardo Álvarez, Francisco; Agustí Comes, Ramon; Pérez Romero, Jordi; Sallent Roig, José Oriol
Bernardo Álvarez, Francisco; Agustí Comes, Ramon; Pérez Romero, Jordi; Sallent Roig, José Oriol
Alonso Zárate, Luis Gonzaga; Pérez Romero, Jordi; Agustí Comes, Ramon; Sallent Roig, José Oriol
 

Coordination

 

Supporters