To access the full text documents, please follow this link: http://hdl.handle.net/2117/8900

Distributed spectrum management based on reinforcement learning
Bernardo Álvarez, Francisco; Agustí Comes, Ramon; Pérez Romero, Jordi; Sallent Roig, José Oriol
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Universitat Politècnica de Catalunya. GRCM - Grup de Recerca en Comunicacions Mòbils
This paper presents a novel distributed framework to decide the spectrum assignment in a primary cellular radio access network. The distributed nature of the framework allows each cell to autonomously decide (by means of machine learning procedures) the best frequencies to use in order to maximize spectral efficiency, preserve quality-of-service, and generate spectrum gaps, so that secondary cognitive radio networks can improve overall spectrum usage. The proposed distributed framework has been validated over a downlink multicell OFDMA radio access network, showing comparable performance results with respect to its centralized counterpart and superior performance with respect to fixed frequency planning schemes.
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació
Signal theory (Telecommunication)
Autonomic systems
Senyal, Teoria del (Telecomunicació)
info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
         

Show full item record

Related documents

Other documents of the same author

Bernardo Álvarez, Francisco; Agustí Comes, Ramon; Pérez Romero, Jordi; Sallent Roig, José Oriol
Bernardo Álvarez, Francisco; Agustí Comes, Ramon; Pérez Romero, Jordi; Sallent Roig, José Oriol
Bernardo Álvarez, Francisco; Agustí Comes, Ramon; Pérez Romero, Jordi; Sallent Roig, José Oriol
Bernardo Álvarez, Francisco; Agustí Comes, Ramon; Pérez Romero, Jordi; Sallent Roig, José Oriol
Bouali, Faouzi; Sallent Roig, José Oriol; Pérez Romero, Jordi; Agustí Comes, Ramon
 

Coordination

 

Supporters