Periodic perturbation of a 3D conservative flow with a heteroclinic connection to saddle-foci

Autor/a

Murillo, A.

Vieiro, Arturo ORCID

Fecha de publicación

2025-04-01



Resumen

The 2-jet normal form of the elliptic volume-preserving Hopf-zero bifurcation provides a one- parameter family of volume-preserving vector fields with a pair of saddle-foci points whose 2-dimensional invariant manifolds form a 2-sphere of spiralling heteroclinic orbits. We study the effect of an external periodic forcing on the splitting of these 2-dimensional invariant manifolds. The internal frequency (related to the foci and already presented in the unperturbed system) interacts with an external one (coming from the periodic forcing). If both frequencies are incommensurable, this interaction leads to quasi-periodicity in the splitting behaviour, which is exponentially small in (a suitable function of) the unfolding parameter of the Hopf-zero bifurcation. The corresponding behaviour is described by a Melnikov function. The changes of dominant harmonics correspond to primary quadratic tangencies between the invariant manifolds. Combining analytical and numerical results, we provide a detailed description of the asymptotic behaviour of the splitting under concrete arithmetic properties of the frequencies.

Tipo de documento

Artículo

Versión del documento

Versión aceptada

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Hopf-zero bifurcation; Splitting of separatrices; Exponentially small phenomena; Quasi-periodic phenomena

Páginas

38 p.

Publicado por

Elsevier

Es versión de

Communications in Nonlinear Science and Numerical Simulation

Documentos

Periodic perturbation of a 3D conservative flow.pdf

3.267Mb

 

Derechos

Attribution-NonCommercial-NoDerivatives 4.0 International

Attribution-NonCommercial-NoDerivatives 4.0 International

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]