Periodic perturbation of a 3D conservative flow with a heteroclinic connection to saddle-foci

Autor/a

Murillo, A.

Vieiro, Arturo ORCID

Data de publicació

2025-04-01



Resum

The 2-jet normal form of the elliptic volume-preserving Hopf-zero bifurcation provides a one- parameter family of volume-preserving vector fields with a pair of saddle-foci points whose 2-dimensional invariant manifolds form a 2-sphere of spiralling heteroclinic orbits. We study the effect of an external periodic forcing on the splitting of these 2-dimensional invariant manifolds. The internal frequency (related to the foci and already presented in the unperturbed system) interacts with an external one (coming from the periodic forcing). If both frequencies are incommensurable, this interaction leads to quasi-periodicity in the splitting behaviour, which is exponentially small in (a suitable function of) the unfolding parameter of the Hopf-zero bifurcation. The corresponding behaviour is described by a Melnikov function. The changes of dominant harmonics correspond to primary quadratic tangencies between the invariant manifolds. Combining analytical and numerical results, we provide a detailed description of the asymptotic behaviour of the splitting under concrete arithmetic properties of the frequencies.

Tipus de document

Article

Versió del document

Versió acceptada

Llengua

Anglès

Matèries CDU

51 - Matemàtiques

Paraules clau

Hopf-zero bifurcation; Splitting of separatrices; Exponentially small phenomena; Quasi-periodic phenomena

Pàgines

38 p.

Publicat per

Elsevier

És versió de

Communications in Nonlinear Science and Numerical Simulation

Documents

Periodic perturbation of a 3D conservative flow.pdf

3.267Mb

 

Drets

Attribution-NonCommercial-NoDerivatives 4.0 International

Attribution-NonCommercial-NoDerivatives 4.0 International

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]