Detecting Outliers with Semi-Supervised Machine Learning: A Fraud Prediction Application

dc.contributor
Xarxa de Referència en Economia Aplicada (XREAP)
dc.contributor.author
Palacio, Sebastian M.
dc.date.accessioned
2018-05-17T11:34:37Z
dc.date.accessioned
2021-01-20T16:45:48Z
dc.date.accessioned
2024-11-29T09:40:18Z
dc.date.available
2018-05-17T11:34:37Z
dc.date.available
2021-01-20T16:45:48Z
dc.date.available
2024-11-29T09:40:18Z
dc.date.created
2018-04
dc.date.issued
2018-04
dc.identifier.uri
http://hdl.handle.net/2072/308327
dc.description.abstract
Abnormal pattern prediction has received a great deal of attention from both academia and industry, with applications that range from fraud, terrorism and intrusion detection to sensor events, medical diagnoses, weather patterns, etc. In practice, most abnormal pattern prediction problems are characterized by the presence of a small number of labeled data and a huge number of unlabeled data. While this points most obviously to the adoption of a semi-supervised approach, most empirical studies have opted for a simplification and treated it as a supervised problem, resulting in a severe bias of false negatives. In this paper, we propose an innovative methodology based on semi-supervised techniques and introduce a new metric the Cluster-Score for abnormal homogeneity measurement. Specifically, the methodology involves transmuting unsupervised models to supervised models using the Cluster-Score metric, which defines the objective boundaries between clusters and evaluates the homogeneity of the abnormalities in the cluster construction. We apply this methodology to a problem of fraud detection among property insurance claims. The objectives are to increase the number of fraudulent claims detected and to reduce the proportion of claims investigated that are, in fact, non-fraudulent. The results from applying our methodology considerably improved these objectives.
cat
dc.format.extent
33 p.
dc.language.iso
eng
dc.publisher
Xarxa de Referència en Economia Aplicada (XREAP)
dc.relation.ispartofseries
XREAP;2018-02
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Aprenentatge automàtic
dc.subject.other
Frau
dc.subject.other
Previsió
dc.subject.other
Assegurances
dc.subject.other
Mineria de dades
dc.subject.other
Machine learning
dc.subject.other
Forecasting
dc.subject.other
Fraud
dc.subject.other
Insurance
dc.subject.other
Data mining
dc.title
Detecting Outliers with Semi-Supervised Machine Learning: A Fraud Prediction Application
dc.type
info:eu-repo/semantics/workingPaper
dc.embargo.terms
cap
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

XREAP2018-02.pdf

629.2Kb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)