Machine Learning Forecasts of Public Transport Demand: A comparative analysis of supervised algorithms using smart card data

Author

Palacio, Sebastian M.

Other authors

Xarxa de Referència en Economia Aplicada (XREAP)

Publication date

2018-04



Abstract

Public transport smart cards are widely used around the world. However, while they provide information about various aspects of passenger behavior, they have not been properly exploited to predict demand. Indeed, traditional methods in economics employ linear unbiased estimators that pay little attention to accuracy, which is the main problem faced by the sector’s regulators. This paper reports the application of various supervised machine learning (SML) techniques to smart card data in order to forecast demand, and it compares these outcomes with traditional linear model estimates. We conclude that the forecasts obtained from these algorithms are much more accurate.

Document Type

Working document

Language

English

Subject

Aprenentatge automàtic; Demanda (Teoria econòmica); Previsió econòmica; Transport públic; Targetes intel·ligents; Machine learning; Demand (Economic theory); Economic forecasting; Lcoal transit; Smart cards

Pages

33 p.

Publisher

Xarxa de Referència en Economia Aplicada (XREAP)

Collection

XREAP; 2018-03

Documents

XREAP2018-03.pdf

852.4Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)