Use this identifier to quote or link this document: http://hdl.handle.net/2072/450452

Fluid-structure interaction simulations outperform computational fluid dynamics in the description of thoracic aorta haemodynamics and in the differentiation of progressive dilation in Marfan syndrome patients
Martorell López, Jordi; Molins Vara, José Javier; Pons, R.; Guala, A.; Rodríguez-Palomares, J.F.; Cajas, J.C.; Dux-Santoy, L.; Teixidó-Tura, G.; Vázquez, M.; Evangelista, A.
Universitat Ramon Llull. IQS
Abnormal fluid dynamics at the ascending aorta may be at the origin of aortic aneurysms. This study was aimed at comparing the performance of computational fluid dynamics (CFD) and fluid–structure interaction (FSI) simulations against four-dimensional (4D) flow magnetic resonance imaging (MRI) data; and to assess the capacity of advanced fluid dynamics markers to stratify aneurysm progression risk. Eight Marfan syndrome (MFS) patients, four with stable and four with dilating aneurysms of the proximal aorta, and four healthy controls were studied. FSI and CFD simulations were performed with MRI-derived geometry, inlet velocity field and Young's modulus. Flow displacement, jet angle and maximum velocity evaluated from FSI and CFD simulations were compared to 4D flow MRI data. A dimensionless parameter, the shear stress ratio (SSR), was evaluated from FSI and CFD simulations and assessed as potential correlate of aneurysm progression. FSI simulations successfully matched MRI data regarding descending to ascending aorta flow rates (R2 = 0.92) and pulse wave velocity (R2 = 0.99). Compared to CFD, FSI simulations showed significantly lower percentage errors in ascending and descending aorta in flow displacement (−46% ascending, −41% descending), jet angle (−28% ascending, −50% descending) and maximum velocity (−37% ascending, −34% descending) with respect to 4D flow MRI. FSI- but not CFD-derived SSR differentiated between stable and dilating MFS patients. Fluid dynamic simulations of the thoracic aorta require fluid–solid interaction to properly reproduce complex haemodynamics. FSI- but not CFD-derived SSR could help stratifying MFS patients.
2020-02
54 - Química
Aneurismes aòrtics
Biologia computacional
Dinàmica de fluids--Informàtica
Interacció fluid-estructura
Ascending aorta aneurysm
Marfan syndrome
Computational fluid dynamic
Fluid–structure interaction
Shear stress ratio
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by/4.0/
© L'autor/a
13 p.
Article
Article - Published version
https://doi.org/10.1098/rsos.191752
The Royal Society; Royal Society of Chemistry
Royal Society Open Science. Vol.7, n.2 (2020), 191752
         

Full text files in this document

Files Size Format
Fluid-structure ... ic aorta haemodynamics.pdf 908.6 KB PDF

Show full item record

Related documents

Other documents of the same author

Pérez, L.; Infante, M.R.; Pons, R.; Morán, C.P; Vinardell Martínez-Hidalgo, Ma. Pilar; Mitjans Arnal, Montserrat; Pinazo Gassol, Aurora
Rudenick, Paula; Bordoné, Maurizio; Bijnens, Bart; Soudah Prieto, Eduardo; Oñate Ibáñez de Navarra, Eugenio; Garcia Dorado, Antonio David; Evangelista, A.
Soudah Prieto, Eduardo; Rudenick, Paula; Bordoné, Maurizio; Bijnens, Bart; Garcia Dorado, Antonio David; Evangelista, A.; Oñate Ibáñez de Navarra, Eugenio
Martorell López, Jordi; Polcaro, Alessandro; Troelstra, Marian Amber; Runge, Jurgen Henk; Burnhope, Emma; Guenthner, Christian; Schneider, Torben; Razavi, Reza; Ismail, Tevfik F.; Sinkus, Ralph
Balcells Camps, Mercedes; Martorell López, Jordi; Chitalia, Vipul C.; Shivanna, Sowmya; Bosch, Irene; Kolandaivelu, Kumaran; Edelman, Elazer R.
 

Coordination

 

Supporters