To access the full text documents, please follow this link:

Narrow proofs may be maximally long
Atserias, Albert; Lauria, Massimo; Nordström, Jakob
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació; Universitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals
We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size n(Omega(w)). This shows that the simple counting argument that any formula refutable in width w must have a proof in size n(O(w)) is essentially tight. Moreover, our lower bound generalizes to polynomial calculus resolution and Sherali-Adams, implying that the corresponding size upper bounds in terms of degree and rank are tight as well. The lower bound does not extend all the way to Lasserre, however, since we show that there the formulas we study have proofs of constant rank and size polynomial in both n and w.
Peer Reviewed
Àrees temàtiques de la UPC::Informàtica::Informàtica teòrica
Computational complexity
Proof complexity
Polynomial calculus
Polynomial calculus resolution
Complexitat computacional

Show full item record

Related documents

Other documents of the same author

Atserias, Albert; Lauria, Massimo; Nordström, Jakob
Elffers, J.; Johannsen, Jan; Lauria, Massimo; Magnard, Thomas; Nordström, Jakob; Vinyals, Marc
Atserias, Albert; Torunczyk, Szymon Abram