Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2117/86545

Segregated Runge-Kutta methods for the incompressible Navier-Stokes equations
Colomés Gené, Oriol; Badia, Santiago
Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental; Universitat Politècnica de Catalunya. ANiComp - Anàlisi numèrica i computació científica
In this work, we propose Runge-Kutta time integration schemes for the incompressible Navier-Stokes equations with two salient properties. First, velocity and pressure computations are segregated at the time integration level, without the need to perform additional fractional step techniques that spoil high orders of accuracy. Second, the proposed methods keep the same order of accuracy for both velocities and pressures. The segregated Runge-Kutta methods are motivated as an implicit-explicit Runge-Kutta time integration of the projected Navier-Stokes system onto the discrete divergence-free space, and its re-statement in a velocity-pressure setting using a discrete pressure Poisson equation. We have analysed the preservation of the discrete divergence constraint for segregated Runge-Kutta methods and their relation (in their fully explicit version) with existing half-explicit methods. We have performed a detailed numerical experimentation for a wide set of schemes (from first to third order), including implicit and IMEX integration of viscous and convective terms, for incompressible laminar and turbulent flows. Further, segregated Runge-Kutta schemes with adaptive time stepping are proposed.
Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
Navier-Stokes equations
Fluid dynamics
Adaptive time stepping
High-order
Incompressible Navier-Stokes
Pressure-segregation
Runge-Kutta
Time integration
Equacions de Navier-Stokes
Dinàmica de fluids
info:eu-repo/semantics/submittedVersion
Artículo
John Wiley & Sons
         

Mostrar el registro completo del ítem