Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

An efficient multi-step iterative method for computing the numerical solution of systems of nonlinear equations associated with ODEs
Ullah, Malik Zaka; Serra Capizzano, Stefano; Ahmad, Fayyaz
Universitat Politècnica de Catalunya. Departament de Física i Enginyeria Nuclear; Universitat Politècnica de Catalunya. GAA - Grup d'Astronomia i Astrofísica
We developed multi-step iterative method for computing the numerical solution of nonlinear systems, associated with ordinary differential equations (ODEs) of the form L(x(t)) + f(x(t)) = g(t) : here L(.) is a linear differential operator and f(.) is a nonlinear smooth function. The proposed iterative scheme only requires one inversion of Jacobian which is computationally very efficient if either LU-decomposition or GMRES-type methods are employed. The higher-order Frechet derivatives of the nonlinear system stemming from the considered ODEs are diagonal matrices. We used the higher-order Frechet derivatives to enhance the convergence-order of the iterative schemes proposed in this note and indeed the use of a multi-step method dramatically increases the convergence-order. The second-order Frechet derivative is used in the first step of an iterative technique which produced third-order convergence. In a second step we constructed matrix polynomial to enhance the convergence-order by three. Finally, we freeze the product of a matrix polynomial by the Jacobian inverse to generate the multi-step method. Each additional step will increase the convergence-order by three, with minimal computational effort. The convergence-order (CO) obeys the formula CO = 3m, where m is the number of steps per full-cycle of the considered iterative scheme. Few numerical experiments and conclusive remarks end the paper.
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals
Nonlinear systems
Ordinary differential equations
Nonlinear systems
Nonlinear ordinary differential equations
Higher order
Frechet derivative
Solving systems
Sistemes no lineals
Equacions diferencials ordinàries

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Qasim, Uswah; Ali, Zulifgar; Ahmad, Fayyaz; Serra Capizzano, Stefano; Ullah, Malik Zaka; Asma, Mir
Ilyas, Iqra; Ali, Zulqar; Ahmad, Fayyaz; Ullah, Malik Zaka; Alshomrani, Ali Saleh
Ahmad, Fayyaz; Shafiq Ur, Rehman; Ullah, Malik Zaka; Aljahdali, Hani Moaiteq; Alshomrani, Ali Saleh; Carrasco, Juan A.; Ahmad, Shamshad
Ullah, Malik Zaka; Ahmad, Fayyaz; Alshomrani, Ali Saleh; Alzahrani, A. K.; Alghamdi, Metib Said; Ahmad, Shamshad; Ahmad, Shahid
Ahmad, Fayyaz; Bhutta, Toseef Akhter ; Sohaib, Umar; Ullah, Malik Zaka; Alshomrani, Ali Saleh; Ahmad, Shamshad; Ahmad, Shahid