To access the full text documents, please follow this link: http://hdl.handle.net/2117/26025

Local integration by parts and Pohozaev indentities for higuer order fractional Laplacians
Ros Oton, Xavier; Serra Montolí, Joaquim
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
We establish an integration by parts formula in bounded domains for the higher order fractional Laplacian (-Delta)(s) with s > 1. We also obtain the Pohozaev identity for this operator. Both identities involve local boundary terms, and they extend the identities obtained by the authors in the case s is an element of (0,1).; As an immediate consequence of these results, we obtain a unique continuation property for the eigenfunctions (-Delta)(s)phi = lambda phi in Omega, phi equivalent to 0 in R-n\Omega.
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística
Differential equations
Fractional Laplacian
higher order
Pohozaev identity
integration by parts
bounded domains
Dirichlet problem
NAVIER-STOKES EQUATION
CONFORMAL GEOMETRY
REGULARITY
CONTROLLABILITY
STABILIZATION
INEQUALITY
CURVATURE
OPERATORS
BOUNDARY
SYSTEMS
Equacions diferencials parcials
Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/publishedVersion
Article
         

Show full item record

Related documents

 

Coordination

 

Supporters