To access the full text documents, please follow this link:

Features in chemical kinetics. II. A self-emerging definition of slow manifolds
Nicolini, Paolo; Frezzato, Diego
Universitat Politècnica de Catalunya. Departament de Física i Enginyeria Nuclear; Universitat Politècnica de Catalunya. SIMCON - Grup de Recerca de Simulació per Ordinador en Matèria Condensada
In the preceding paper of this series (Part I, P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234101(2013)) we have unveiled some ubiquitous features encoded in the systems of polynomial differential equations normally applied in the description of homogeneous and isothermal chemical kinetics (mass-action law). Here we proceed by investigating a deeply related feature: the appearance of so-called slow manifolds (SMs) which are low-dimensional hyper-surfaces in the neighborhood of which the slow evolution of the reacting system occurs after an initial fast transient. Indeed a geometrical definition of SM, devoid of subjectivity, “naturally” follows in terms of a specific subdimensional domain embedded in the peculiar region of the concentrations phase-space that in Part I we termed as “attractiveness region.” Numerical inspections on simple low-dimensional model cases are presented, including the benchmark case of Davis and Skodje [J. Chem. Phys. 111, 859 (1999)] and the preliminary analysis of a simplified model mechanism of hydrogen combustion.
Peer Reviewed
Àrees temàtiques de la UPC::Física
Chemical kinetics
Cinètica química

Show full item record