To access the full text documents, please follow this link:

Rigidity of Hamiltonian actions on Poisson manifolds
Miranda Galcerán, Eva; Monnier, Philippe; Tien Zung, Nguyen
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
This paper is about the rigidity of compact group actions in the Poisson context. The main result is that Hamiltonian actions of compact semisimple type are rigid. We prove it via a Nash-Moser normal form theorem for closed subgroups of SCI-type. This Nash-Moser normal form has other applications to stability results that we will explore in a future paper. We also review some classical rigidity results for differentiable actions of compact Lie groups and export it to the case of symplectic actions of compact Lie groups on symplectic manifolds.
Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria diferencial
Geometry, Differencial
Geometria diferencial
Attribution-NonCommercial-NoDerivs 3.0 Spain
Article - Draft

Show full item record

Related documents

Other documents of the same author

Miranda Galcerán, Eva; Tien Zung, Nguyen; Monnier, Philippe
Miranda Galcerán, Eva; Pires, Ana Rita; Guillemin, Victor; Scott, Geoffrey
Miranda Galcerán, Eva; Presas, Francisco