To access the full text documents, please follow this link:

Locking in the incompressible limit: pseudo-divergence-free element free Galerkin
Vidal Seguí, Yolanda; Villon, Pierre; Huerta, Antonio
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III; Universitat Politècnica de Catalunya. LACÀN - Centre Específic de Recerca de Mètodes Numèrics en Ciències Aplicades i Enginyeria
Locking in finite elements has been a major concern since its early developments and has been extensively studied. However, locking in mesh-free methods is still an open topic. Until now the remedies proposed in the literature are extensions of already developed methods for finite elements. Here a new approach is explored and an improved formulation that asymptotically suppresses volumetric locking for the EFG method is proposed. The diffuse divergence converges to the exact divergence. Since the diffuse divergence-free condition can be imposed a priori, new interpolation functions are defined that asymptotically verify the incompressibility condition. Modal analysis and numerical results for classical benchmark tests in solids and fluids corroborate this issue.
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
Galerkin methods
Element Free Galerkin
Diffuse derivatives
Moving Least Squares
Incompressible flow
LBB condition
Galerkin, Mètodes de

Show full item record

Related documents

Other documents of the same author

Peraire Guitart, Jaume; Bonet Carbonell, Javier; Huerta, Antonio; Persson, Per Olof; Vidal Seguí, Yolanda
Vidal Seguí, Yolanda; Parés Mariné, Núria; Díez, Pedro; Huerta, Antonio