To access the full text documents, please follow this link: http://hdl.handle.net/2117/7751

On some partitioning problems for two-colored point sets
Grima, Clara; Hernando Martín, María del Carmen; Huemer, Clemens; Hurtado Díaz, Fernando Alfredo
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV; Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II; Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
Let S be a two-colored set of n points in general position in the plane. We show that S admits at least 2 n 17 pairwise disjoint monochromatic triangles with vertices in S and empty of points of S. We further show that S can be partitioned into 3 n 11 subsets with pairwise disjoint convex hull such that within each subset all but at most one point have the same color. A lower bound on the number of subsets needed in any such partition is also given.
Àrees temàtiques de la UPC::Matemàtiques i estadística
Geometria computacional -- Congressos
Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
         

Show full item record

Related documents

Other documents of the same author

Garcia Olaverri, Alfredo Martin; Huemer, Clemens; Hurtado Díaz, Fernando Alfredo; Tejel Altarriba, Francisco Javier
Aichholzer, Oswin; Hackl, Thomas; Huemer, Clemens; Hurtado Díaz, Fernando Alfredo; Vogtenhuber, Birgit
García, Alfredo; Huemer, Clemens; Hurtado Díaz, Fernando Alfredo; Tejel Altarriba, F. Javier
Aichholzer, Oswin; Cabello, Sergio; Fabila Monroy, Ruy; Flores Peñaloza, David; Hackl, Thomas; Huemer, Clemens; Hurtado Díaz, Fernando Alfredo; Wood, David
Huemer, Clemens; Hurtado Díaz, Fernando Alfredo; Pfeifle, Julián
 

Coordination

 

Supporters