Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

RFI mitigation in microwave radiometry using wavelets
Camps Carmona, Adriano José; Tarongí Bauzá, José Miguel
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
The performance of microwave radiometers can be seriously degraded by the presence of radio-frequency interference (RFI). Spurious signals and harmonics from lower frequency bands, spread-spectrum signals overlapping the “protected” band of operation, or out-of-band emissions not properly rejected by the pre-detection filters due to the finite rejection modify the detected power and the estimated antenna temperature from which the geophysical parameters will be retrieved. In recent years, techniques to detect the presence of RFI have been developed. They include time- and/or frequency domain analyses, or statistical analysis of the received signal which, in the absence of RFI, must be a zero-mean Gaussian process. Current mitigation techniques are mostly based on blanking in the time and/or frequency domains where RFI has been detected. However, in some geographical areas, RFI is so persistent in time that is not possible to acquire RFI-free radiometric data. In other applications such as sea surface salinity retrieval, where the sensitivity of the brightness temperature to salinity is weak, small amounts of RFI are also very difficult to detect and mitigate. In this work a wavelet-based technique is proposed to mitigate RFI (cancel RFI as much as possible). The interfering signal is estimated by using the powerful denoising capabilities of the wavelet transform. The estimated RFI signal is then subtracted from the received signal and a “cleaned” noise signal is obtained, from which the power is estimated later. The algorithm performance as a function of the threshold type, and the threshold selection method, the decomposition level, the wavelet type and the interferenceto-noise ratio is presented. Computational requirements are evaluated in terms of quantization levels, number of operations, memory requirements (sequence length). Even though they are high for today’s technology, the algorithms presented can be applied to recorded data. The results show that even RFI much larger than the noise signal can be very effectively mitigated, well below the noise level.
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Circuits de microones, radiofreqüència i ones mil·limètriques
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal
Signal theory (Telecommunication)
Senyal, Teoria del (Telecomunicació)

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Camps Carmona, Adriano José; Marchán Hernández, Juan Fernando; Bosch Lluís, Xavier; Rodríguez Álvarez, Nereida; Ramos Pérez, Isaac; Valencia Domènech, Enric; Tarongí Bauzá, José Miguel; Hyuk, Park; Carreño Luengo, Hugo; Alonso Arroyo, Alberto; Pascual Biosca, Daniel; Onrubia Ibáñez, Raúl; Forte Veliz, Giuseppe Francesco; Querol Borràs, Jorge
Forte Veliz, Giuseppe Francesco; Tarongí Bauzá, José Miguel; Depau, Veronica; Vall-Llossera Ferran, Mercedes Magdalena; Camps Carmona, Adriano José
Forte Veliz, Giuseppe Francesco; Camps Carmona, Adriano José; Tarongí Bauzá, José Miguel; Vall-Llossera Ferran, Mercedes Magdalena
Depau, Veronica; Tarongí Bauzá, José Miguel; Forte Veliz, Giuseppe Francesco; Camps Carmona, Adriano José
Martín Neira, Manuel; Altena, B.; van Bree, R.; Van Der Marel, H.; Camps Carmona, Adriano José; Rius, Antonio; Nogués Correig, O.; Ribó, S.; Cardellach, Estel; Oliveras, S.; Valencia Domènech, Enric; Hyuk, Park; Tarongí Bauzá, José Miguel