3D Electrophoresis-assisted lithography (3DEAL): 3D molecular printing to create functional patterns and anisotropic hydrogels

dc.contributor.author
Aguilar, Juan P.
dc.contributor.author
Lipka, Michal
dc.contributor.author
Primo, Gastón A.
dc.contributor.author
Licon Bernal, Edxon Eduardo
dc.contributor.author
Fernández Pradas, Juan Marcos
dc.contributor.author
Yaroshchuk, Andriy
dc.contributor.author
Albericio Palomera, Fernando
dc.contributor.author
Mata, Álvaro
dc.date.accessioned
2024-11-26T18:48:46Z
dc.date.available
2024-11-26T18:48:46Z
dc.date.issued
2019-06-04T12:23:20Z
dc.date.issued
2019-06-04T12:23:20Z
dc.date.issued
2018-04-11
dc.date.issued
2019-06-04T12:23:21Z
dc.identifier
1616-301X
dc.identifier
http://hdl.handle.net/2445/134503
dc.identifier
676567
dc.identifier.uri
http://hdl.handle.net/2445/134503
dc.description.abstract
The ability to easily generate anisotropic hydrogel environments made from functional molecules with microscale resolution is an exciting possibility for the biomaterials community. This study reports a novel 3D electrophoresis‐assisted lithography (3DEAL) platform that combines elements from proteomics, biotechnology, and microfabrication to print well‐defined 3D molecular patterns within hydrogels. The potential of the 3DEAL platform is assessed by patterning immunoglobulin G, fibronectin, and elastin within nine widely used hydrogels and characterizing pattern depth, resolution, and aspect ratio. Furthermore, the technique's versatility is demonstrated by fabricating complex patterns including parallel and perpendicular columns, curved lines, gradients of molecular composition, and patterns of multiple proteins ranging from tens of micrometers to centimeters in size and depth. The functionality of the printed molecules is assessed by culturing NIH‐3T3 cells on a fibronectin‐patterned polyacrylamide‐collagen hydrogel and selectively supporting cell growth. 3DEAL is a simple, accessible, and versatile hydrogel‐patterning platform based on controlled molecular printing that may enable the development of tunable, chemically anisotropic, and hierarchical 3D environments.
dc.format
application/pdf
dc.language
eng
dc.publisher
Wiley-VCH
dc.relation
Versió postprint del document publicat a: https://doi.org/10.1002/adfm.201703014
dc.relation
Advanced Functional Materials, 2018, vol. 28, num. 15, p. 1703014
dc.relation
https://doi.org/10.1002/adfm.201703014
dc.rights
(c) Wiley-VCH, 2018
dc.rights
info:eu-repo/semantics/openAccess
dc.source
Articles publicats en revistes (Física Aplicada)
dc.subject
Electroforesi
dc.subject
Litografia
dc.subject
Impressió 3D
dc.subject
Biotecnologia
dc.subject
Electrophoresis
dc.subject
Lithography
dc.subject
Three-dimensional printing
dc.subject
Biotechnology
dc.title
3D Electrophoresis-assisted lithography (3DEAL): 3D molecular printing to create functional patterns and anisotropic hydrogels
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/acceptedVersion


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.