Cyclic coverings of genus 2 curves of Sophie Germain type

Autor/a

Naranjo, J. C.

Ortega, A.

Spelta, I.

Fecha de publicación

2024-05-21



Resumen

We consider cyclic unramified coverings of degree d of irreducible complex smooth genus 2 curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order d. TherichgeometryoftheassociatedPrymmaphasbeenstudiedinseveralpapers,andthecases 𝑑 = 2,3,5,7 are quite well understood. Nevertheless, very little is known for higher values of d. In this paper, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for 𝑑 ≥ 11 prime such that (𝑑−1)/2 is also prime. We use results of arithmetic nature on 𝐺𝐿2-type abelian varieties combined with theta-duality techniques.

Tipo de documento

Artículo
Versión publicada

Lengua

Inglés

Palabras clave

Algebraic and Complex Geometry; Prym Varieties

Páginas

14 p.

Publicado por

Cambridge University Press

Es versión de

Forum of Mathematics, Sigma

Documentos

cyclic-coverings-of-genus.pdf

333.6Kb

 

Derechos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: https://creativecommons.org/licenses/by/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]