We consider cyclic unramified coverings of degree d of irreducible complex smooth genus 2 curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order d. TherichgeometryoftheassociatedPrymmaphasbeenstudiedinseveralpapers,andthecases 𝑑 = 2,3,5,7 are quite well understood. Nevertheless, very little is known for higher values of d. In this paper, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for 𝑑 ≥ 11 prime such that (𝑑−1)/2 is also prime. We use results of arithmetic nature on 𝐺𝐿2-type abelian varieties combined with theta-duality techniques.
Inglés
Algebraic and Complex Geometry; Prym Varieties
14 p.
Cambridge University Press
Forum of Mathematics, Sigma
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: https://creativecommons.org/licenses/by/4.0/
CRM Articles [656]