dc.contributor.author
Jorba, À.
dc.contributor.author
Jorba-Cuscó, M.
dc.contributor.author
Rosales, J.J.
dc.date.accessioned
2023-02-02T10:47:33Z
dc.date.accessioned
2024-09-19T14:27:02Z
dc.date.available
2023-02-02T10:47:33Z
dc.date.available
2024-09-19T14:27:02Z
dc.date.issued
2020-02-07
dc.identifier.uri
http://hdl.handle.net/2072/530698
dc.description.abstract
The bicircular model is a periodic time-dependent perturbation of the Earth–Moon restricted three-body problem that includes the direct gravitational effect of the Sun on the infinitesimal particle. In this paper, we focus on the dynamics in the neighbourhood of the 𝐿1 point of the Earth–Moon system. By means of a periodic time-dependent reduction to the centre manifold, we show the existence of two families of quasi-periodic Lyapunov orbits, one planar and one vertical. The planar Lyapunov family undergoes a (quasi-periodic) pitchfork bifurcation giving rise to two families of quasi-periodic halo orbits. Between them, there is a family of Lissajous quasi-periodic orbits, with three basic frequencies.
eng
dc.format.extent
26 p.
cat
dc.publisher
Springer
cat
dc.relation.ispartof
Celestial Mechanics and Dynamical Astronomy
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Astrofísica
cat
dc.title
The vicinity of the Earth–Moon L1 point in the bicircular problem
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/publishedVersion
cat
dc.identifier.doi
10.1007/s10569-019-9940-2
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess