The vicinity of the Earth–Moon L1 point in the bicircular problem

Autor/a

Jorba, À.

Jorba-Cuscó, M.

Rosales, J.J.

Fecha de publicación

2020-02-07



Resumen

The bicircular model is a periodic time-dependent perturbation of the Earth–Moon restricted three-body problem that includes the direct gravitational effect of the Sun on the infinitesimal particle. In this paper, we focus on the dynamics in the neighbourhood of the 𝐿1 point of the Earth–Moon system. By means of a periodic time-dependent reduction to the centre manifold, we show the existence of two families of quasi-periodic Lyapunov orbits, one planar and one vertical. The planar Lyapunov family undergoes a (quasi-periodic) pitchfork bifurcation giving rise to two families of quasi-periodic halo orbits. Between them, there is a family of Lissajous quasi-periodic orbits, with three basic frequencies.

Tipo de documento

Artículo
Versión publicada

Lengua

Inglés

Materias CDU

52 - Astronomía. Astrofísica. Investigación espacial. Geodesia

Palabras clave

Astrofísica

Páginas

26 p.

Publicado por

Springer

Es versión de

Celestial Mechanics and Dynamical Astronomy

Documentos

VicinityEarth.pdf

3.475Mb

 

Derechos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-sa/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]