Boundary behaviour of universal covering maps

Autor/a

R. Ferreira, G.

Jové, A.

Data de publicació

2025-05-01



Resum

Let Ω⊂Cˆ be a multiply connected domain, and let π:D→Ω be a universal covering map. In this paper, we analyze the boundary behaviour of π, describing the interplay between radial limits and angular cluster sets, the tangential and non-tangential limit sets of the deck transformation group, and the geometry and the topology of the boundary of Ω. As an application, we describe accesses to the boundary of Ω in terms of radial limits of points in the unit circle, establishing a correspondence, in the same spirit as in the simply connected case. We also develop a theory of prime ends for multiply connected domains which behaves properly under the universal covering, providing an extension of the Carathéodory–Torhorst Theorem to multiply connected domains.

Tipus de document

Article

Versió del document

Versió publicada

Llengua

Anglès

Matèries CDU

51 - Matemàtiques

Paraules clau

Cluster sets; Fuchsian groups; Multiply connected domains; Prime ends; Universal coverings

Pàgines

59 p.

Publicat per

Elsevier

És versió de

Advances in Mathematics

Documents

Boundary behaviour of universal covering maps.pdf

1.495Mb

 

Drets

Attribution 4.0 International

Attribution 4.0 International

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]