Rectangulotopes

Autor/a

Cardinal, J.

Pilaud, P.

Fecha de publicación

2025-03-01



Resumen

Rectangulations are decompositions of a square into finitely many axis-aligned rectangles. We describe realizations of (n - 1)- dimensional polytopes associated with two combinatorial families of rectangulations composed of n rectangles. They are defined as quotientopes of natural lattice congruences on the weak Bruhat order on permutations in fin, and their skeleta are flip graphs on rectangulations. We give simple vertex and facet descriptions of these polytopes, in particular elementary formulas for computing the coordinates of the vertex corresponding to each rectangulation, in the spirit of J.-L. Loday's realization of the associahedron. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Tipo de documento

Artículo

Versión del documento

Versión aceptada

Lengua

Alemán

Materias CDU

51 - Matemáticas

Palabras clave

Combinatronics

Páginas

24 p.

Publicado por

Elsevier

Es versión de

European Journal of Combinatorics

Documentos

Rectangulotopes.pdf

974.6Kb

 

Derechos

Attribution-NonCommercial-NoDerivatives 4.0 International

Attribution-NonCommercial-NoDerivatives 4.0 International

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]