On the consistency of circuit lower bounds for non-deterministic time

Autor/a

Atserias, A.

Buss, S.

Müller, M.

Data de publicació

2024-09-01



Resum

We prove the first unconditional consistency result for superpolynomial circuit lower bounds with a relatively strong theory of bounded arithmetic. Namely, we show that the theory V20 is consistent with the conjecture that NEXP not subset of P/poly, i.e. some problem that is solvable in non-deterministic exponential time does not have polynomial size circuits. We suggest this is the best currently available evidence for the truth of the conjecture. The same techniques establish the same results with NEXP replaced by the class of problems decidable in non-deterministic barely superpolynomial time such as NTIME(n(O(log log log n))). Additionally, we establish a magnification result on the hardness of proving circuit lower bounds.

Tipus de document

Article

Versió del document

Versió presentada

Llengua

Anglès

Paraules clau

Non-deterministic exponential time; Polynomial size circuits; Circuit complexity; Consistency; Independence; Bounded arithmetic

Pàgines

32 p.

Publicat per

World Scientific Publishing

És versió de

Journal Of Mathematical Logic

Documents

On the Consistency of Circuit Lower Bounds.pdf

421.4Kb

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]