Darboux, Moser and Weinstein theorems for prequantum systems and applications to geometric quantization

Autor/a

Miranda, E.

Weistman, J.

Fecha de publicación

2024-12-01



Resumen

We establish analogs of the Darboux, Moser and Weinstein theorems for prequantum systems. We show that two prequantum systems on a manifold with vanishing first cohomology, with symplectic forms defining the same cohomology class and homotopic to each other within that class, differ only by a symplectomorphism and a gauge transformation. As an application, we show that the Bohr-Sommerfeld quantization of a prequantum system on a manifold with trivial first cohomology is independent of the choice of the connection.

Tipo de documento

Artículo

Versión del documento

Versión publicada

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Prequantum systems; Quantization; Real polarization; Darboux-Weinstein-Moser theorem

Páginas

4 p.

Publicado por

Elsevier

Es versión de

Journal of Geometry and Physics

Documentos

Darboux_Moser_and_Weinstein_theorems.pdf

202.3Kb

 

Derechos

(c) 2024 The Author(s)

Attribution-NonCommercial-NoDerivatives 4.0 International

(c) 2024 The Author(s)

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]