Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2117/887

Breakdown of heteroclinic orbits for some analytic unfoldings of the Hopf-zero singularity
Baldomá Barraca, Inmaculada; Martínez-Seara Alonso, M. Teresa
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
In this paper we study the exponentially small splitting of a heteroclinic orbit in some unfoldings of the central singularity also called Hopf-zero singularity. The fields under consideration are of the form: dx dτ = −δxz − y (α + cδz) + δp+1f(δx, δy, δz, δ) dy dτ = −δyz + x (α + cδz) + δp+1g(δx, δy, δz, δ) dz dτ = δ ?−1 + b(x2 + y2) + z2? + δp+1h(δx, δy, δz, δ), where f, g and h are real analytic functions, α, b and c are constants and δ is a small parameter. When f = g = h = 0 the system has a heteroclinic orbit between the critical points (0, 0,±1) given by: {(x, y) = (0, 0) ;−1 < z < 1}. Let ds,u be the distance between the one dimensional stable and unstable manifold of the perturbed system measured at the plane z = 0. We prove that for any f, g such that ˆm(i α) ?= 0, where ˆm is the Borel transform of the function m(u) = u1+i c(f + i g)(0, 0, u, 0) |ds,u| = 2π ecπ/2 | ˆm(i α)|δp e−π|α|/(2δ)(1 + O(δp+2| log δ|)), p>−2.
Bifurcation theory
Exponentially small splitting
Hopf-zero bifurcation
Melnikov function
Borel transform
Bifurcació, Teoria de la
Classificació AMS::37 Dynamical systems and ergodic theory::37G Local and nonlocal bifurcation theory
Attribution-NonCommercial-NoDerivs 2.5 Spain
http://creativecommons.org/licenses/by-nc-nd/2.5/es/
Artículo
         

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Baldomá Barraca, Inmaculada; Fontich, Ernest; Guàrdia Munarriz, Marcel; Martínez-Seara Alonso, M. Teresa
Baldomá Barraca, Inmaculada; Castejón i Company, Oriol; Martínez-Seara Alonso, M. Teresa
Baldomá Barraca, Inmaculada; Castejón i Company, Oriol; Martínez-Seara Alonso, M. Teresa
Aguareles Carrero, Maria; Baldomá Barraca, Inmaculada; Martínez-Seara Alonso, M. Teresa