Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/10256/7869

Propagation through fractal media: The Sierpinski gasket and the Koch curve
Campos, Daniel; Fort, Joaquim; Méndez López, Vicenç
We present new analytical tools able to predict the averaged behavior of fronts spreading through self-similar spatial systems starting from reaction-diffusion equations. The averaged speed for these fronts is predicted and compared with the predictions from a more general equation (proposed in a previous work of ours) and simulations. We focus here on two fractals, the Sierpinski gasket (SG) and the Koch curve (KC), for two reasons, i.e. i) they are widely known structures and ii) they are deterministic fractals, so the analytical study of them turns out to be more intuitive. These structures, despite their simplicity, let us observe several characteristics of fractal fronts. Finally, we discuss the usefulness and limitations of our approa
Fractals
Fluctuacions (Física)
Moviment brownià
Brownian mouvements
Tots els drets reservats
Artículo
info:eu-repo/semantics/publishedVersion
EDP Sciences
         

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Ortega-Cejas, Vicente; Fort, Joaquim; Méndez López, Vicenç; Campos, Daniel
Campos, Daniel; Méndez López, Vicenç; Fort, Joaquim
Ortega Cobos, David; Ibáñez, Juan José; Campos, Daniel; Khalidi, Lamya; Méndez López, Vicenç; Teira, Luís