On rigid analytic uniformizations of Jacobians of Shimura curves

Author

Longo, Matteo

Rotger, Víctor

Vigni, Stefano

Other authors

Centre de Recerca Matemàtica

Publication date

2010-02



Abstract

The main goal of this article is to give an explicit rigid analytic uniformization of the maximal toric quotient of the Jacobian of a Shimura curve over Q at a prime dividing exactly the level. This result can be viewed as complementary to the classical theorem of Cerednik and Drinfeld which provides rigid analytic uniformizations at primes dividing the discriminant. As a corollary, we offer a proof of a conjecture formulated by M. Greenberg in hispaper on Stark-Heegner points and quaternionic Shimura curves, thus making Greenberg's construction of local points on elliptic curves over Q unconditional.

Document Type

Preliminary Edition

Language

English

CDU Subject

514 - Geometry

Subject

Corbes; Integració de funcions

Pages

46

416592 bytes

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 932

Documents

Pr932.pdf

406.8Kb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)