For a given graph G = (V,E), we define its nth subdivision as the graph obtained from G by replacing every edge by a path of length n. We also define the mth power of G as the graph on vertex set V where we connect every pair of vertices at distance at most m in G. In this paper, we study the chromatic number of powers of subdivisions of graphs and resolve the case m = n asymptotically. In particular, our result confirms a conjecture of Mozafari-Nia and Iradmusa in the case m = n = 3 in a strong sense.
English
Combinatronics
6 p.
Elsevier
Discrete Applied Mathematics
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: https://creativecommons.org/licenses/by/4.0/
CRM Articles [656]