On the chromatic number of powers of subdivisions of graphs

Author

Anastos, M.

Boyadzhiyska, S.

Rathke, S.

Rué, J.

Publication date

2025-01-15



Abstract

For a given graph G = (V,E), we define its nth subdivision as the graph obtained from G by replacing every edge by a path of length n. We also define the mth power of G as the graph on vertex set V where we connect every pair of vertices at distance at most m in G. In this paper, we study the chromatic number of powers of subdivisions of graphs and resolve the case m = n asymptotically. In particular, our result confirms a conjecture of Mozafari-Nia and Iradmusa in the case m = n = 3 in a strong sense.

Document Type

Article
Published version

Language

English

Subject

Combinatronics

Pages

6 p.

Publisher

Elsevier

Version of

Discrete Applied Mathematics

Documents

OnTheChromaticNumber.pdf

430.6Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: https://creativecommons.org/licenses/by/4.0/

This item appears in the following Collection(s)

CRM Articles [656]