We derive a model for the optimization of the bending and torsional rigidities of nonhomogeneous elastic rods. This is achieved by studying a sharp interface shape optimization problem with perimeter penalization, that treats both rigidities as objectives. We then formulate a phase field approximation of the optimization problem and show the convergence to the aforementioned sharp interface model via Gamma-convergence. In the final part of this work we numerically approximate minimizers of the phase field problem by using a steepest descent approach and relate the resulting optimal shapes to the development of the morphology of plant stems.
English
Gamma-convergence; Shape optimization; Mathematical modeling; Sharp interface; Phase field problems; Diffuse interface; Optimality conditions; Numerical simulations; Steepest descent; Plant morphology
26 p.
EDP Sciences
ESAIM: Control, Optimisation and Calculus of Variations
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: https://creativecommons.org/licenses/by/4.0/
CRM Articles [656]