Hirzebruch-Zagier classes and rational elliptic curves over quintic fields

dc.contributor.author
Fornea, M.
dc.contributor.author
Jin, Z. R.
dc.date.accessioned
2025-01-22T10:59:57Z
dc.date.available
2025-01-22T10:59:57Z
dc.date.issued
2024-08-09
dc.identifier.uri
http://hdl.handle.net/2072/480071
dc.description.abstract
Conditionally on a conjecture on the & eacute;tale cohomology of Hilbert modular surfaces and some minor technical assumptions, we establish new instances of the equivariant BSD-conjecture in rank 0 with applications to the arithmetic of rational elliptic curves over quintic fields. The key ingredients are a refinement of twisted triple product p-adic L-functions, the construction of a compatible collection of Hirzebruch-Zagier cycles and an explicit reciprocity law relating the two.
ca
dc.format.extent
72 p.
ca
dc.language.iso
eng
ca
dc.publisher
Springer
ca
dc.relation.ispartof
Mathematische Zeitschrift
ca
dc.rights
Attribution 4.0 International
*
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
*
dc.subject.other
Hirzebruch-Zagier classes
ca
dc.subject.other
Elliptic curves
ca
dc.title
Hirzebruch-Zagier classes and rational elliptic curves over quintic fields
ca
dc.type
info:eu-repo/semantics/article
ca
dc.subject.udc
51
ca
dc.description.version
info:eu-repo/semantics/acceptedVersion
ca
dc.embargo.terms
cap
ca
dc.identifier.doi
10.1007/s00209-024-03564-y
ca
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documentos

Hirzebruch–Zagierclassesandrationalellipticcurves overquinticfields.pdf

749.7Kb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]