Topological Entropy, Sets of Periods, and Transitivity for Circle Maps

Autor/a

Alsedà, L.

Bordignon, L.

Groisman, J.

Fecha de publicación

2024-07-30



Resumen

Transitivity, the existence of periodic points, and positive topological entropy can be used to characterize complexity in dynamical systems. It is known that, for every graph that is not a tree and any epsilon > 0, there exist (complicated) totally transitive maps (then with cofinite set of periods) such that the topological entropy is smaller than epsilon (simplicity). To numerically measure the complexity of the set of periods, we introduce a notion of the boundary of cofiniteness. Larger boundary of cofiniteness corresponds to a simpler set of periods. We show that, for any continuous circle maps of degree one, every totally transitive (and, hence, robustly complicated) map with small topological entropy has arbitrarily large (simplicity) boundary of cofiniteness.

Tipo de documento

Artículo

Versión del documento

Versión presentada

Lengua

Inglés

Materias CDU

51 - Matemáticas; 515.1 - Topología

Palabras clave

Entropy

Páginas

76 p.

Publicado por

Springer

Es versión de

Ukrainian Mathematical Journal

Documentos

Topological Entropy Sets of Periods and Transitivity for Circle Maps.pdf

723.7Kb

 

Derechos

Attribution-NonCommercial 4.0 International

Attribution-NonCommercial 4.0 International

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]