A multiscale model of epigenetic heterogeneity-driven cell fate decision-making

Author

Folguera-Blasco, Núria

Pérez-Carrasco, Rubén

Cuyàs, Elisabet

Menendez, Javier A.

Alarcón, Tomàs

Publication date

2019-04-01



Abstract

Author summary Certain modifications of the structure and functioning of the protein/DNA complex called chromatin can allow adult, fully differentiated, cells to adopt a stem cell-like pluripotent state in a purely epigenetic manner, not involving changes in the underlying DNA sequence. Such reprogramming-like phenomena may constitute an innate reparative route through which human tissues respond to injury and could also serve as a novel regenerative strategy in human pathological situations in which tissue or organ repair is impaired. However, it should be noted that in vivo reprogramming would be capable of maintaining tissue homeostasis provided the acquisition of pluripotency features is strictly transient and accompanied by an accurate replenishment of the specific cell types being lost. Crucially, an excessive reprogramming in the absence of controlled re-differentiation would impair the repair or the replacement of damaged cells, thereby promoting pathological alterations of cell fate. A mechanistic understanding of how the degree of chromatin plasticity dictates the reparative versus pathological behaviour of in vivo reprogramming to rejuvenate aged tissues while preventing tumorigenesis is urgently needed, including especially the intrinsic epigenetic heterogeneity of the tissue resident cells being reprogrammed. We here introduce a novel method that mathematically captures how epigenetic heterogeneity is actually the driving force that governs the routes and kinetics to entry into and exit from a pathological stem-like state. Moreover, our approach computationally validates the likelihood of unlocking chronic, unrestrained plastic states and drive their differentiation down the correct path by solely manipulating the intensity and direction of few epigenetic control switches. Our approach could inspire new therapeutic approaches based on in vivo cell reprogramming for efficient tissue regeneration and rejuvenation and cancer treatment.

Document Type

Article
Published version

Language

English

CDU Subject

51 - Mathematics

Subject

Matemàtiques

Pages

27 p.

Version of

PLOS Computational Biology (Public Library of Science)

Documents

journal.pcbi.1006592.pdf

3.061Mb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)

CRM Articles [656]