dc.contributor.author
Rabanal, R.
dc.date.accessioned
2020-10-14T12:56:54Z
dc.date.accessioned
2024-09-19T13:31:07Z
dc.date.available
2020-10-14T12:56:54Z
dc.date.available
2024-09-19T13:31:07Z
dc.date.issued
2014-01-01
dc.identifier.uri
http://hdl.handle.net/2072/377565
dc.description.abstract
We study the limit cycles of two families of differential systems in the plane. These systems are obtained by polynomial perturbations with arbitrary degree on the second component of the standard linear center. In this context, in both cases, we provide an accurate upper bound of the maximum number of limit cycles that the perturbed system can have bifurcating from the periodic orbits of the linear center, using the averaging theory of first, second and third order.
eng
dc.format.extent
22 p.
cat
dc.relation.ispartof
CRM Preprints
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Matemàtiques
cat
dc.title
On the limit cycles of a class of Kukles type differential systems
cat
dc.type
info:eu-repo/semantics/preprint
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess