Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic

dc.contributor
Universitat Oberta de Catalunya. Internet Interdisciplinary Institute (IN3)
dc.contributor
Universidade do Porto
dc.contributor.author
Armas Adrián, Jésica de
dc.contributor.author
Juan Pérez, Ángel Alejandro
dc.contributor.author
Marquès Puig, Joan Manuel
dc.contributor.author
Pedroso, João Pedro
dc.date
2018-09-07T08:32:45Z
dc.date
2018-09-07T08:32:45Z
dc.date
2017-10
dc.identifier.citation
de Armas, J., Juan, A.A., Marquès Puig, J. & Pedroso, J.P. (2017). Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic. Journal of the Operational Research Society, 68(10), 1161-1176. doi: 10.1057/s41274-016-0155-6
dc.identifier.citation
0160-5682
dc.identifier.citation
1476-9360
dc.identifier.citation
10.1057/s41274-016-0155-6
dc.identifier.uri
http://hdl.handle.net/10609/84585
dc.description.abstract
The uncapacitated facility location problem (UFLP) is a popular combinatorial optimization problem with practical applications in different areas, from logistics to telecommunication networks. While most of the existing work in the literature focuses on minimizing total cost for the deterministic version of the problem, some degree of uncertainty (e.g., in the customers' demands or in the service costs) should be expected in real-life applications. Accordingly, this paper proposes a simheuristic algorithm for solving the stochastic UFLP (SUFLP), where optimization goals other than the minimum expected cost can be considered. The development of this simheuristic is structured in three stages: (i) first, an extremely fast savings-based heuristic is introduced; (ii) next, the heuristic is integrated into a metaheuristic framework, and the resulting algorithm is tested against the optimal values for the UFLP; and (iii) finally, the algorithm is extended by integrating it with simulation techniques, and the resulting simheuristic is employed to solve the SUFLP. Some numerical experiments contribute to illustrate the potential uses of each of these solving methods, depending on the version of the problem (deterministic or stochastic) as well as on whether or not a real-time solution is required.
dc.language.iso
eng
dc.publisher
Journal of the Operational Research Society
dc.relation
Journal of the Operational Research Society, 2017, 68(10)
dc.relation
https://link.springer.com/epdf/10.1057/s41274-016-0155-6
dc.relation
info:eu-repo/grantAgreement/TRA2013-48180-C3-P
dc.relation
info:eu-repo/grantAgreement/TRA2015-71883-REDT
dc.relation
info:eu-repo/grantAgreement/2014-CTP-00001
dc.rights
(c) Author/s & (c) Journal
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.subject
uncapacitated facility location problem
dc.subject
stochastic combinatorial optimization problems
dc.subject
metaheuristics
dc.subject
simheuristics
dc.subject
problema de localización de instalaciones no capacitado
dc.subject
metaheurística
dc.subject
simheurística
dc.subject
problemas de optimización combinatoria estocástica
dc.subject
problema de localització d'instal·lacions no capacitat
dc.subject
problemes d'optimització combinatòria estocàstica
dc.subject
metaheurística
dc.subject
simheurística
dc.subject
Combinatorial optimization
dc.subject
Optimització combinatòria
dc.subject
Optimización combinatoria
dc.title
Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/publishedVersion


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Articles [216]