Strong isomorphism reductions in complexity theory

Author

Buss, Samuel R.

Chen, Yijia

Flum, Jörg

Friedman, Sy D.

Müller, Moritz

Other authors

Centre de Recerca Matemàtica

Publication date

2011



Abstract

We give the first systematic study of strong isomorphism reductions, a notion of reduction more appropriate than polynomial time reduction when, for example, comparing the computational complexity of the isomorphim problem for different classes of structures. We show that the partial ordering of its degrees is quite rich. We analyze its relationship to a further type of reduction between classes of structures based on purely comparing for every n the number of nonisomorphic structures of cardinality at most n in both classes. Furthermore, in a more general setting we address the question of the existence of a maximal element in the partial ordering of the degrees.

Document Type

Preliminary Edition

Language

English

CDU Subject

510 - Fundamental and general considerations of mathematics

Subject

Lògica matemàtica; Complexitat computacional

Pages

26

272090 bytes

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 1009

Documents

Pr1009.pdf

265.7Kb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)