Generalized descriptive set theory and classification theory

Author

Friedman, Sy D.

Hyttinen, Tapani

Kulikov, Vadim

Other authors

Centre de Recerca Matemàtica

Publication date

2010-12



Abstract

Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper we study the generalization where countable is replaced by uncountable. We explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. We also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. Our results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.

Document Type

Preliminary Edition

Language

English

CDU Subject

510 - Fundamental and general considerations of mathematics

Subject

Lògica matemàtica; Conjunts, Teoria de; Models, Teoria dels

Pages

99

615547 bytes

Publisher

Centre de Recerca Matemàtica

Collection

Prepublicacions del Centre de Recerca Matemàtica; 999

Documents

Pr999.pdf

601.1Kb

 

Rights

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

This item appears in the following Collection(s)