Use this identifier to quote or link this document: http://hdl.handle.net/2072/97194

Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Nadukandi, Prashanth
Agència de Gestió d'Ajuts Universitaris i de Recerca; Centro Internacional de Métodos Numéricos en Ingeniería
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.
2010-11-30
51 - Matemàtiques
Galerkin, Mètodes de
Elements finits, Mètode dels
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original i l’Agència i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
8 p.
Report
Els ajuts de l'AGAUR;2006FI00836
         

Full text files in this document

Files Size Format
2006FI 00836_Nadukandi.pdf 185.8 KB PDF

Show full item record

Related documents

Other documents of the same author

Nadukandi, Prashanth; Serván Camas, Borja; Becker, Pablo; García Espinosa, Julio
Oñate Ibáñez de Navarra, Eugenio; Miquel Canet, Juan; Nadukandi, Prashanth
Nadukandi, Prashanth; Oñate Ibáñez de Navarra, Eugenio; García Espinosa, Julio
García Espinosa, Julio; Oñate Ibáñez de Navarra, Eugenio; Serván Camas, Borja; Nadukandi, Prashanth; Becker, Pablo Agustín
 

Coordination

 

Supporters