Use this identifier to quote or link this document:

Asymptotic flocking dynamics for the kinetic Cucker-Smale model
Carrillo, José A.; Fornasier, Massimo; Rosado, Jesús; Toscani, Giuseppe
Centre de Recerca Matemàtica
In this paper, we analyse the asymptotic behavior of solutions of the continuous kinetic version of flocking by Cucker and Smale [16], which describes the collective behavior of an ensemble of organisms, animals or devices. This kinetic version introduced in [24] is here obtained starting from a Boltzmann-type equation. The large-time behavior of the distribution in phase space is subsequently studied by means of particle approximations and a stability property in distances between measures. A continuous analogue of the theorems of [16] is shown to hold for the solutions on the kinetic model. More precisely, the solutions will concentrate exponentially fast their velocity to their mean while in space they will converge towards a translational flocking solution.
517 - Anàlisi
Equacions no lineals
Anàlisi matemàtica
Espais mètrics
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;886

Full text files in this document

Files Size Format
Pr886.pdf 241.0 KB PDF

Show full item record