To access the full text documents, please follow this link: http://hdl.handle.net/2117/107536

A methodology for energy prediction and optimization of a system based on the Energy Hub Concept using Particle Swarms
Kampouropoulos, Konstantinos; Andrade, Fabio; Cárdenas Araújo, Juan José; Romeral Martínez, José Luis
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica; Universitat Politècnica de Catalunya. MCIA - Centre MCIA Innovation Electronics
In this paper, a methodology for the energy prediction for the different consumptions of a system based in the Energy Hub concept is presented. The methodology that has been used for the energy prediction is based on an Adaptive Neuro-Fuzzy Inference System. An optimization method based on Particle Swarms has been used to minimize the energy cost of a system with multiple sources such as, photovoltaic, electrical grid and natural gas.
Peer Reviewed
Àrees temàtiques de la UPC::Enginyeria elèctrica::Producció d’energia elèctrica
Àrees temàtiques de la UPC::Informàtica::Automàtica i control
Particles
Force and energy
Forecasting
Energy Prediction
Adaptive Neuro-Fuzzy Inference System
Energy Hub
Particle Swarm Optimization
Partícules (Matèria)
Energia
Previsió
info:eu-repo/semantics/submittedVersion
info:eu-repo/semantics/conferenceObject
         

Show full item record

Related documents

Other documents of the same author

Kampouropoulos, Konstantinos; Andrade, Fabio; Sala Cardoso, Enric; García Espinosa, Antonio; Romeral Martínez, José Luis
Andrade, Fabio; Kampouropoulos, Konstantinos; Romeral Martínez, José Luis; Vasquez Quintero, Juan Carlos; Guerrero, Josep M.
Kampouropoulos, Konstantinos; Sala Cardoso, Enric; Andrade, Fabio; Romeral Martínez, José Luis
Kampouropoulos, Konstantinos; Cárdenas Araújo, Juan José; Giacometto Torres, Francisco; Romeral Martínez, José Luis
Giacometto Torres, Francisco; Cárdenas Araújo, Juan José; Kampouropoulos, Konstantinos; Romeral Martínez, José Luis
 

Coordination

 

Supporters