Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2117/106299

BASS: boundary-aware superpixel segmentation
Rubio Romano, Antonio; Yu, Longlong; Simó Serra, Edgar; Moreno-Noguer, Francesc
Universitat Politècnica de Catalunya. Institut de Robòtica i Informàtica Industrial; Universitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI
© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
We propose a new superpixel algorithm based on exploiting the boundary information of an image, as objects in images can generally be described by their boundaries. Our proposed approach initially estimates the boundaries and uses them to place superpixel seeds in the areas in which they are more dense. Afterwards, we minimize an energy function in order to expand the seeds into full superpixels. In addition to standard terms such as color consistency and compactness, we propose using the geodesic distance which concentrates small superpixels in regions of the image with more information, while letting larger superpixels cover more homogeneous regions. By both improving the initialization using the boundaries and coherency of the superpixels with geodesic distances, we are able to maintain the coherency of the image structure with fewer superpixels than other approaches. We show the resulting algorithm to yield smaller Variation of Information metrics in seven different datasets while maintaining Undersegmentation Error values similar to the state-of-the-art methods.
Peer Reviewed
Àrees temàtiques de la UPC::Informàtica::Automàtica i control
pattern clustering
superpixels
segmentation
geodesic
boundaries
Classificació INSPEC::Pattern recognition
Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/submittedVersion
info:eu-repo/semantics/conferenceObject
IEEE Press
         

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Rubio Romano, Antonio; Yu, Longlong; Simó Serra, Edgar; Moreno-Noguer, Francesc
Rubio Romano, Antonio; Yu, Longlong; Simo Serra, Edgar; Moreno-Noguer, Francesc
Rubio Romano, Antonio; Villamizar Vergel, Michael Alejandro; Ferraz Colomina, Luis; Peñate Sánchez, Adrián; Ramisa Ayats, Arnau; Simó Serra, Edgar; Sanfeliu Cortés, Alberto; Moreno-Noguer, Francesc
Rubio Romano, Antonio; Villamizar Vergel, Michael Alejandro; Ferraz Colomina, Luis; Peñate Sánchez, Adrián; Sanfeliu Cortés, Alberto; Moreno-Noguer, Francesc
Rubio Romano, Antonio; LongLong, Yu; Simo Serra, Edgar; Moreno-Noguer, Francesc