Per accedir als documents amb el text complet, si us plau, seguiu el següent enllaç:

Speaker recognition by means of restricted Boltzmann machine adaptation
Safari, Pooyan; Ghahabi, Omid; Hernando Pericás, Francisco Javier
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla
Restricted Boltzmann Machines (RBMs) have shown success in speaker recognition. In this paper, RBMs are investigated in a framework comprising a universal model training and model adaptation. Taking advantage of RBM unsupervised learning algorithm, a global model is trained based on all available background data. This general speaker-independent model, referred to as URBM, is further adapted to the data of a specific speaker to build speaker-dependent model. In order to show its effectiveness, we have applied this framework to two different tasks. It has been used to discriminatively model target and impostor spectral features for classification. It has been also utilized to produce a vector-based representation for speakers. This vector-based representation, similar to i-vector, can be further used for speaker recognition using either cosine scoring or Probabilistic Linear Discriminant Analysis (PLDA). The evaluation is performed on the core test condition of the NIST SRE 2006 database.
Peer Reviewed
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica
Automatic speech recognition
Reconeixement automàtic de la parla
Universidad Autónoma de Madrid

Mostra el registre complet del document

Documents relacionats

Altres documents del mateix autor/a

Safari, Pooyan; Ghahabi, Omid; Hernando Pericás, Francisco Javier
Safari, Pooyan; Ghahabi, Omid; Hernando Pericás, Francisco Javier
Ghahabi, Omid; Hernando Pericás, Francisco Javier