Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

Design and construction of an UAV for plague-control purposes
Garcia Durban, Alberto; Duijneveld Gavin, Coen
Casas Piedrafita, Óscar
An UAV or Unmanned Aerial Vehicle is a multi-purpose platform that is capable of achieving tasks that lie beyond anything that has ever been achieved thanks to the performance, capabilities and inner characteristics that make these vehicles excel in certain aspects. The technical development of this vehicles is just as remarkable as their possible applications. This project is allocated within one of these yet undeveloped applications, which is the plague control, focusing on the mosquito nests control. To serve to the intended purpose, a complete unmanned aerial system is designed and built. The document starts with an initial classification of the multiple types of Unmanned Aerial Vehicles that exist up to date, basing the classification on the vehicle size, autonomy, range of action, payload capacity and mission. The created system is capable of flying completely autonomously missions up to 10 km while transmitting a video and telemetry stream through the internet, gathering information from ground sensors and carrying a mosquito-lethal dose of Bacillus Thuringiensis Israelensis or abbreviated BTI. To achieve the intended task, a detailed theoretical analysis is developed in order to choose the appropriate material and subsystems starting with the airframe selection to continue with a deep physical calculation regarding the lift and drag of the model wings as so the fuselage, horizontal and vertical stabilizers drag to be able to select the adequate propeller to then select the proper motor, electronic speed controller and battery to fulfill the initial technical specifications. As for the onboard hardware, the set is composed by an open-source low-cost autopilot which navigates and controls the plane, and an onboard low-weight computer used to perform the extra tasks with no relation with the aircraft control. The chosen airframe is a Skywalker 1900 mm commanded by an APM 2.6 from 3DRobotics while a Raspberry Pi takes the control over the advanced functions such as the long-range data transmission, the video-stream transmission, the connectivity with the ground sensors via an Arduino-based 2.4 GHz XBee system and the control of the BTI mosquito agent deployment system. The several test flights carried on during the project are developed in order to demonstrate that the initial objectives are accomplished. Finally, the main conclusions obtained from the project are introduced to end with the several possible modifications that could be included in light of improving the characteristics and the operation of the designed system.
Un UAV o un Vehicle Aeri No Tripulat es una plataforma multiprop ´ osit que ` es capac¸ de dur ´ a terme tasques que van mes enllar de qualsevol cosa que s’hagi pogut fer mai gr ´ acies a ` les caracter´ıstiques que fan que aquests vehicles resaltin en certs aspectes. El desenvolupament tecnic d’aquests vehicles ` es tant extraordinari com les seves pos- ´ sibles aplicacions que tenen. Aquest projecte es centra en una d’aquestes aplicacions encara no desenvolupades, control de plaga, centrant-se en el control de mosquits. Per dur a terme aquesta tasca s’ha dissenyat i construit un sistema UAV complet. El document comenc¸a amb una classificacio dels m ´ ultiples tipus de Vehicles Aeris No Tri- ´ pulats que existeixen avui en dia. Aquesta classificacio es basa en el tamany, autonomia, ´ abast d’accio, capacitat de c ´ arrega i missi ` o. ´ El sistema creat es capac¸ ´ de volar autonomament missions de fins a 10 km mentre transmet video i telemetria en temps real a traves d’internet, recollint informaci ´ o de sensors ´ situats a terra i portant una carrega una dosi antimosquits de Bacillus Thuringiensis Isra- ` elensis (BTI). Per aconseguir l’objectiu del projecte, s’ha dut a terme un analisi te ` oric detallat per esco- ` llir adequadament tot el material i subsistemes necessaris comenc¸ant per l’estructura de l’aeronau per continuar amb calculs de sustentaci ` o i resist ´ encia aerodin ` amica. Aquests ` calculs han perm ` es escollir adequadament el motor necessari juntament amb l’h ` elix, el ` variador (ESC) i la bateria per complir amb les especificacions tecniques inicials. ` L’estructura escollida es el Skywalker 1900 FPV comandat per un APM 2.6 de 3DRobotics ´ mentre una Raspberry Pi s’encarrega de les funcions avanc¸ades com la transmissio de ´ video i telemetria, node entre autopilot i estacio terrestre, la recol ´ ·leccio de dades de sen- ´ sors terrestres mitjanc¸ant un sistema Arduino amb un modul XBee a 2.4 GHz i el control ` del sistema de descarrega de l’agent antimosquits BTI. ` Tots els tests que s’han dut a terme durant el desenvolupament del projecte s’han inclos` en aquest document per demostrar que els requeriments s’han complert. Finalment, es presenten les principals conclusions extretes del projecte per acabar amb possibles modificacions que es podrien fer en un futur per millorar les caracteristiques i l’operacio del ´ sistema dissenyat.
Àrees temàtiques de la UPC::Aeronàutica i espai::Aviònica
Drone aircraft
Aeronautics in mosquito control
Ground sensors network
Raspberry Pi
Avions no tripulats
Control de plagues
Attribution-NonCommercial-ShareAlike 3.0 Spain
Universitat Politècnica de Catalunya

Mostrar el registro completo del ítem