To access the full text documents, please follow this link:

High-order continuous and discontinuous Galerkin methods for wave problems
Giorgiani, Giorgio; Modesto Galende, David; Fernandez Mendez, Sonia; Huerta, Antonio
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III; Universitat Politècnica de Catalunya. LACÀN - Centre Específic de Recerca de Mètodes Numèrics en Ciències Aplicades i Enginyeria
hree Galerkin methods—continuous Galerkin, Compact Discontinuous Galerkin, and hybridizable discontinuous Galerkin—are compared in terms of performance and computational efficiency in 2-D scattering problems for low and high-order polynomial approximations. The total number of DOFs and the total runtime are used for this correlation as well as the corresponding precision. The comparison is carried out through various numerical examples. The superior performance of high-order elements is shown. At the same time, similar capabilities are shown for continuous Galerkin and hybridizable discontinuous Galerkin, when high-order elements are adopted, both of them clearly outperforming compact discontinuous Galerkin
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
Galerkin methods
Discontinuous Galerkin
High-order elements
Wave propagation
Mètodes de Galerking

Show full item record

Related documents

Other documents of the same author

Giorgiani, Giorgio; Fernandez Mendez, Sonia; Huerta, Antonio
Modesto Galende, David; Fernandez Mendez, Sonia; Huerta, Antonio