Utilizad este identificador para citar o enlazar este documento: http://hdl.handle.net/2072/203891

Clustering algorithms for anti-money laundering using graph theory and social network analysis
Awasthi, Abhishek
Centre de Recerca Matemàtica
HEMOLIA (a project under European community’s 7th framework programme) is a new generation Anti-Money Laundering (AML) intelligent multi-agent alert and investigation system which in addition to the traditional financial data makes extensive use of modern society’s huge telecom data source, thereby opening up a new dimension of capabilities to all Money Laundering fighters (FIUs, LEAs) and Financial Institutes (Banks, Insurance Companies, etc.). This Master-Thesis project is done at AIA, one of the partners for the HEMOLIA project in Barcelona. The objective of this thesis is to find the clusters in a network drawn by using the financial data. An extensive literature survey has been carried out and several standard algorithms related to networks have been studied and implemented. The clustering problem is a NP-hard problem and several algorithms like K-Means and Hierarchical clustering are being implemented for studying several problems relating to sociology, evolution, anthropology etc. However, these algorithms have certain drawbacks which make them very difficult to implement. The thesis suggests (a) a possible improvement to the K-Means algorithm, (b) a novel approach to the clustering problem using the Genetic Algorithms and (c) a new algorithm for finding the cluster of a node using the Genetic Algorithm.
519.1 - Teoria general de l'anàlisi combinatòria. Teoria de grafs
Clústers Grafs, Teoria dels Algorismes
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/
75 p.
Centre de Recerca Matemàtica
Master Research Projects;

Documentos con el texto completo de este documento

Ficheros Tamaño Formato
Master_Thesis_Abhishek_Awasthi.pdf 2.355 MB PDF

Mostrar el registro completo del ítem