Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

Turbulence modelling and numerical issues: from RANS to DNS and LES
Pérez Segarra, Carlos David; Lehmkuhl Barba, Oriol; Jaramillo Ibarra, Julian Ernesto; Colomer Rey, Guillem; Oliva Llena, Asensio
Universitat Politècnica de Catalunya. Departament de Màquines i Motors Tèrmics; Universitat Politècnica de Catalunya. CTTC - Centre Tecnològic de la Transferència de Calor
The objective of this work is to show possibilities and limitations of different turbulence models from RANS to DNS and LES. Firstly, standard approaches based on time averaging the governing equations (the so called Reynolds Averaged Navier-Stokes equations or RANS models) are presented. Attention is focused on explicit algebraic and eddy-viscosity linear and non-linear two-equation models. Aspects related to forced and natural convection, low-Reynolds number approaches, numerical issues, etc. are shown. A different simulation level is then presented: the Direct Numerical Simulation or DNS approach. This kind of analysis describes the whole range of the turbulent motion scales, from the largest ones (similar to the domain size) to the smallest ones (also called dissipative or Kolmogorov scales), where the fluctuations are damped and turbulent energy is irreversibly converted into internal energy. Aspects related to the discretization of the governing equations and the necessity of preserving some properties of the Navier-Stokes equations are pointed out. Examples are shown with emphasis on the possibilities and limitations of this important approach where no empirical inputs are needed at all. The paper ends with promising turbulence models based on the full simulation of the largest scales of the turbulent flow, while the smaller ones are modelled. This is called Large Eddy Simulation or LES approach. Discussion starts with classical techniques based on modelling the non-linear interactions of the convective operator as a diffusion term. Afterwards, the use of regularization techniques as a large eddy simulation model is discussed. The formulation is based on symmetry-preserving discretization methodology on non-structured and collocated meshes. In this approach, the length of the filter is the only empirical parameter used by the model. Examples of both natural and forced convection in well-known benchmark cases, and also in industrial applications, are presented.
Peer Reviewed
Àrees temàtiques de la UPC::Enginyeria mecànica::Mecànica de fluids
Navier-Stokes equations
Simulation methods
Turbulència -- Models matemàtics
Equacions de Navier-Stokes

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Jaramillo Ibarra, Julian Ernesto; Pérez Segarra, Carlos David; Lehmkuhl Barba, Oriol; Oliva Llena, Asensio
Jaramillo Ibarra, Julian Ernesto; Pérez Segarra, Carlos David; Oliva Llena, Asensio; Oliet Casasayas, Carles
Jaramillo Ibarra, Julian Ernesto; Oliva Llena, Asensio; Pérez Segarra, Carlos David; Soria Guerrero, Manel
Rigola Serrano, Joaquim; Lehmkuhl Barba, Oriol; Pérez Segarra, Carlos David; Colomer Rey, Guillem
Capdevila Paramio, Roser; Lehmkuhl Barba, Oriol; Trias Miquel, Francesc Xavier; Pérez Segarra, Carlos David; Colomer Rey, Guillem